Nat Biotechnol:DNA重复片段——基因组中的“黑物质”
2019年11月25日 讯 /生物谷BIOON/ -- 基因组的大部分区域由重复片段组成。这些“ DNA重复序列”在错误位置的扩增可能会产生严重后果。然而,DNA重复序列的扩增非常难以分析。柏林马克斯·普朗克分子遗传学研究所的研究人员最近开发的一种方法可以详细查看这些以前无法进入的基因组区域。它结合了纳米孔测序,干细胞和CRISPR-Cas技术。该方法可以改善未来各种先天性疾病和癌症的诊断。&nb
Cell:在细胞分裂时,组蛋白化学修饰也可遗传,并在维持后代细胞身份中起关键作用
2019年11月18日讯/生物谷BIOON/---在一项新的研究中,来自美国纽约大学朗格尼医学中心的研究人员发现不仅DNA的遗传,而且包装DNA的蛋白发生的变化的遗传在细胞增殖时维持它们的身份。这项研究揭示了在发育期间,每个细胞进行增殖而产生两个子细胞时,它们将它们的身份传递给下一代细胞。这些研究人员说,所有细胞都具有一套相同而又完整的DNA,但是每个细胞经编程后激活或沉默某些基因,从而确定它们是
肝脏再生与类器官形成中表观遗传重塑过程
在成体肝脏中,生理条件下细胞迭代的速率较低。而肝脏遇到组织损伤的情况下,细胞则能够高效地发挥再生能力【1-4】。最近有研究发现,胆管细胞能够发展成为具有自我更新能力的肝脏类器官,并且具有分化成为肝细胞和导管细胞的能力【5】。但是胆管细胞获得细胞可塑性、起始类器官发育以及应对组织损伤的再生能力是如何发生的,这其中的分子机制还很不清楚。2019年11月4日,剑桥大学Meritx
Nature:癌细胞的代谢途径“变异”的秘密
2019年10月25日 讯 /生物谷BIOON/ --最近,由芝加哥大学的研究人员领导的一项新研究揭示了为什么癌细胞消耗和使用营养物的方式与健康细胞不同,以及这种差异如何促进癌细胞的生存和生长。 所有细胞都需要产生能量来维持生命,但是癌细胞为了快速生长和繁殖而对能量的需求不断增加。了解不同类型的细胞如何自我维持或代谢是一个有吸引力的研究领域,因为可以通过开发新的药物来中断和利用这一过程。
Elife:机器学习与表观遗传学药物发现
2019年10月24日 讯 /生物谷BIOON/ --随着计算机技术的发展,机器学习强大的处理数据的能力正在彻底改变我们的新药发现模式。近日,Sanford Burnham Prebys医学发现研究所的科学家开发了一种机器学习算法,可以从显微镜图像中收集信息,从而可以进行高通量表观遗传药物筛选,从而可以开辟针对癌症,心脏病,精神疾病等的新疗法。该研究结果发表在最近的《eLife》杂志上。文章作者,
Science子刊:戒烟为什么老是失败?这得怪你的脑子!
2019年10月14日讯 /生物谷BIOON /--超过90%的吸烟者尝试戒烟失败。原因可能隐藏在他们的大脑中。许多试图戒烟的人经常求助于戒烟药物,包括尼古丁戒烟贴片(NicoDerm CQ)或Chantix。在近日发表的一项研究中, 佛罗里达国际大学(FIU)心理学博士生Jessica Flannery和一组科学家发现大脑的一部分参与吸烟欲望和尼古丁戒断症状的形成, 而大脑的一个完全独立的部分与
PNAS:脑膜瘤分子图谱帮助预测肿瘤的复发
2019年10月10日 讯 /生物谷BIOON/ --最近,来自贝勒医学院和德克萨斯儿童医院神经科学研究所的研究人员在《PNAS》杂志上发表文章称,通过使用分子谱,能够更好地预测脑膜瘤复发。 第一作者Akash J. Patel博士解释说:“目前的脑膜瘤分类是根据世界卫生组织(WHO)提出的标准。它将脑膜瘤分为三类:I级(良性),II级(非典型)和III级(恶性)。 “ WHO系统是基于
我国科学家实现单细胞表观组学新突破:两种革新单细胞ChIP-seq技术解码细胞命运决定机制
在国家重点研发计划“干细胞及转化”重点专项(批准号:2017YFA0103402)等资助下,北京大学分子医学研究所、北大-清华生命科学联合中心何爱彬课题组近期突破单细胞表观遗传研究的瓶颈,开发了两种具有普适性、操作简单、风格迥异的单细胞ChIP-seq技术,可适应于不同课题研究需要,解析发育与疾病状态下细胞命运决定调控机制。这两项技术分别于2019年8月27日在Molecular Cell和201
Aging Cell:生长激素竟可以逆转衰老
2019年9月23日讯 /生物谷BIOON /--一个隶属于美国几家机构和加拿大一家机构的研究小组发现,有证据表明重组人类生长激素(recombinant human growth hormone,rhGH)可以逆转人类的表观遗传衰老。在发表在《Aging Cell》杂志上的论文中,该小组描述了他们如何揭示rhGH对胸腺的影响。研究人员报告称,他们对rhGH对胸腺影响的兴趣始于1986年的一份报告
Nature:母体维生素C调节DNA甲基化重编程和生殖细胞产生
2019年9月19日讯/生物谷BIOON/---发育通常被认为是在基因组中固定下来的,不过有几项证据表明它易受环境调节的影响,可能产生长期后果。胚胎生殖系由于具有代际表观遗传效应的潜力而受到特别关注。哺乳动物生殖系经历广泛的DNA去甲基化,这在很大程度上通过连续细胞分裂对甲基化进行被动稀释而发生,并且伴随着TET酶对活性DNA的去甲基化。人们已发现TET酶活性受到诸如维生素C之类的营养物和代谢物的