Nature Communications:开发出新型高性能基因编码的环磷酸腺苷荧光探针
活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。
2022年9月Cell期刊精华
2022年9月份即将结束,9月份Cell期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。
Cell:破迷长达50年的谜团,新研究揭示了细菌是如何移动的
在一项新的研究中,来自美国弗吉尼亚大学医学院的研究人员和他们的合作者解决了一个数十年来关于大肠杆菌和其他细菌如何能够移动的谜团。相关研究结果发表在2022年9月15日的Cell期刊上。
三篇Science论文指出人工智能可以比以前更准确和更快速地用来构建蛋白分子
如今,发表在Science期刊上的三篇论文描述了在蛋白设计中取得了里程碑式进展。在这些新的论文中,来自美国华盛顿大学医学院的研究人员指出机器学习可以比以前更准确和更快速地用来构建蛋白分子。
Cell:新研究解析出人类胱氨酸转运蛋白的三维结构,有助开发针对胱氨酸病的新疗法
在一项新的研究中,研究人员结合了他们在研究蛋白结构和功能的三种专门方法方面的专业知识,确定了突变如何干扰胱氨酸转运蛋白的正常功能,提出了一种开发这种疾病新疗法的方法。
斑马鱼高通量三维成像研究取得进展
斑马鱼胚胎具有通体透明特点,适于光学显微镜下的活体观测。光片显微技术(Light-sheet microscopy)是一种新型的三维成像方式,具有光毒性小、扫描速度快等特点。针对斑马鱼、线虫等毫米级
Science:我国科学家首次解析出人类苦味受体TAS2R46的三维结构
在一项新的研究中,我国科学家确定并分析了人类苦味受体TAS2R46在马钱子碱结合形式或apo形式时与G蛋白结合在一起时的低温电镜结构,首次提供了人类味觉受体的三维结构图。
Nature子刊:新显微技术让“不可见”的生物分子无处遁形
了解特定蛋白质在细胞和组织中是如何排列的对科学家们来说至关重要。因为,这种精微的结构是机体生物功能和疾病状态的核心。
Nature子刊:李乐乐团队实现炎症相关mRNA体内实时动态成像及早期诊断
这项研究为炎症相关 RNA 高灵敏成像提供了一种新方法,有望应用于炎症相关疾病的早期诊断及治疗过程的实时评价。
促进肿瘤细胞凋亡的分子开关研究获进展
近日,该团队设计合成了具有顺-反异构转化的四苯乙烯化合物(T-P)。该分子不仅具有可见光响应的顺反异构特性,而且在生物体系中其顺-反异构比率受白蛋白的影响