Science重磅:局部重编程让心肌细胞“返老还童” 让心脏实现再生
目前,中国心脑血管疾病现患人数约2.9亿,其中与心脏疾病相关的患者就超过了2500万人,随着发病人数的持续增加,保护心脏、保持身体健康显得尤为重要。心脏对于每个人的重要性不言而喻,众所周知,成年人的心脏几乎不具备自愈和再生能力,一旦受损就难以恢复到原来的状态,因此,一旦患上心脏病,这种不可逆的心脏损伤将跟随终生。这种不可修复的损伤,主
如何返老还童,逆转大脑衰老?肠道菌群和大脑的奇妙关联又双叒叕增加了
近年来,肠道微生物群越来越被认为是宿主免疫和大脑健康的重要调节因子。衰老过程会导致微生物群发生巨大变化,这与老年人群的健康状况不佳和虚弱有关。此前研究表明,衰老会触发代谢和免疫反应的变化,进一步导致大脑功能和行为的紊乱,其中包括海马体相关认知行为的损害。值得注意的是,动物模型已经揭示微生物群在调节宿主肠道衰老相关生物标志物方面具有一定
Nat Commun:科学家识别出一种有望让人类大脑“返老还童”的新型分子
2021年6月12日 讯 /生物谷BIOON/ --目前研究人员并不清楚调节成年人中枢神经系统(CNS)中髓鞘修复背后的分子机制。最近有研究表明,大脑中每天都会有新的脑细胞形成,从而来应对损伤、体育锻炼和精神刺激;而胶质细胞,尤其是被称之为少突胶质细胞祖细胞(oligodendrocyte progenitors)的胶质细胞,其对外部信号和损伤有较高的反应,
Cell Stem Cell:靶向miR-132有望让阿尔茨海默病患者的大脑返老还童
2021年5月27日讯/生物谷BIOON/---阿尔茨海默病(Alzheimer's disease, AD)是一种起病隐匿的渐进性发展的神经系统退行性疾病。临床初症状表现为记忆力下降、日常生活能力产生障碍,最终将卧床不起、大小便失禁,完全需要依赖家人的照顾,病因迄今未明。在65岁以前发病,称为早老性痴呆;在65岁以后发病,称为老年性痴呆。目前只能通过药物缓
Stem Cells:衰老生态位可使造血干细胞的“返老还童”?
年轻的造血干细胞,当移植到一个年老的骨髓环境中时,确实会显示出老的造血干细胞的特征。这表明衰老生态位对造血干细胞的功能有很强的影响。根据这一概念,本研究发现老年骨髓生态位中分泌的细胞因子骨桥蛋白(OPN)水平的下降,是年轻造血干细胞衰老的标志。本研究的目的是确定衰老生态位是否可能影响返老还童的造血干细胞的年轻样功能。
Cell Stem Cell:上调核纤层蛋白B1表达让衰老的神经干细胞返老还童
2021年2月28日讯/生物谷BIOON/---随着人们年龄的增长,他们的神经干细胞失去了增殖和生产新神经元的能力,从而导致记忆功能下降。如今,在一项新的研究中,来自瑞士苏黎世大学的研究人员发现了一种与神经干细胞老化有关的机制,以及如何重新激活神经元的产生。相关研究结果于2021年2月24日在线发表在Cell Stem Cell期刊上,论文标题为“Decli
eLife:小分子ISR抑制剂有望让大脑返老还童
2021年1月3日讯/生物谷BIOON/---衰老是所有生物不可避免的过程。随着预期寿命的延长,与年龄相关的认知能力下降是一个正在浮现的全球性问题。在衰老过程中会出现错误折叠的蛋白积累,这导致了整合应激反应(integrated stress response, ISR)的慢性激活,其中ISR是一种进化上保守的蛋白稳态程序,由内质网应激激活。药物类小分子IS
JEM:揭示衰老影响造血干细胞的功能,即便将衰老的造血干细胞移植到年轻的骨髓微环境也不能真正地返老还童
2020年12月29日讯/生物谷BIOON/---通过将小鼠年老的造血干细胞(年老HSC)转移到年轻小鼠的骨髓微环境(bone marrow niche,也译为骨髓壁龛)中,可以证实年老HSC的基因表达模式恢复到年轻造血干细胞的模式。另一方面,年老HSC的功能在年轻的骨髓微环境中没有恢复。年老HSC的表观基因组(DNA甲基化)即使在年轻的骨髓微环境中也没有
抑制15-PGDH蛋白可让年老小鼠的肌肉返老还童
2020年12月13日讯/生物谷BIOON/---在一项新的研究中,来自美国斯坦福大学医学院的研究人员发现阻断年老小鼠体内一种蛋白的活性一个月,可以恢复它们萎缩肌肉的质量(mass)和力量,并帮助它们在跑步机上跑得更久。相反,增加年轻小鼠体内这种蛋白的表达会导致它们的肌肉萎缩和削弱。相关研究结果于2010年12月10日在线发表在Science期刊上,论文标题
PNAS:机械重编程可让成纤维细胞返老还童,恢复收缩能力
2020年6月2日讯/生物谷BIOON/---成纤维细胞是最常见的结缔组织细胞。它们产生动物组织的结构框架,合成细胞外基质和胶原蛋白,并在伤口愈合中发挥着重要作用。然而,在细胞老化过程中,成纤维细胞会失去收缩能力,从而导致因结缔组织减少而引起的僵硬。在一项新的研究中,来自新加坡国立大学机械生物学研究所的研究人员发现这些成纤维细胞可以通过几何限制在微图案基质(