Cell Rep:清华科学家发现促进高脂饮食摄入的特殊神经元
2017年7月10日讯 /生物谷BIOON/ --肥胖是一个全球性问题,很多人认为食物摄入过多是导致肥胖的主要原因。但是影响食物摄入的可调节性神经回路还没有得到充分的研究。在一项发表在国际学术期刊Cell Reports上的研究中,来自清华大学麦戈文脑科学研究院的宋森研究院带领研究团队发现位于基底前脑的生长激素抑制素神经元(somatostatin neurons,SOM)和伽马氨基丁酸能神经元(
Nat Biotechnol:新技术帮助揭示行为背后的复杂神经元激活机制
20172017年6月27日 讯 /生物谷BIOON/ --自从科学家们开始研究大脑以来,经常会被问到的一个问题就是他们所观察到的生物学现象是否与特定的外在的行为有关。研究者们对神经元的生物物理特性、分子机制以及细胞间相互作用等已经有了深入的研究,但这些机制对于个体的行为究竟有哪些影响目前仍不清楚。Kwon博士等人则通过对大脑整体进行观察找到了其中的奥秘,相关结果发表在最近一期的《nature t
PNAS:巨噬细胞能够修复受损神经元?
2017年6月17日/生物谷BIOON/---生物医学工程师们最近发现了一种依靠免疫系统促进受损神经元细胞再生的方法。巨噬细胞被认为是免疫系统的"吃豆人",它是机体抵抗外界侵染的第一道防线。当机体中存在微生物或坏死的细胞碎片的时候,巨噬细胞会发生吞噬作用将其清除。不过,最近一项研究表明一些类型的巨噬细胞同时具有促进组织愈合的能力。(图片摘自www.pixabay.com)在发表在最近一期《PNAS
Nat Commun:北京大学程和平课题组和中科大毕国强研究组合作发现“线粒体炫”调控神经元突触水平的长时程记忆
2017年6月26日,国际学术权威刊物自然出版集团旗下子刊《Nature Communications》杂志上在线发表了北京大学分子医学研究所程和平-王显花课题组与中国科学技术大学生命科学学院毕国强课题组合作的一篇研究论文,研究揭示了神经元树突“线粒体炫信号”在神经突触传递短时程记忆向长时程记忆的转化中可能发挥着关键作用。本文共同第一作者为付忠孝博士和谈笑博士,通讯作者为王显花副研究员、程和平教授
Science:感觉神经元在慢性神经痛发病机制中居然能够转换角色
发表在《科学》杂志上的一项突破性研究表明,快反应神经元能够改变其作用在慢性疼痛发病过程中导致疼痛产生。这一发现或许能够帮助我们找到更好的治疗方法。疼痛是医学研究中一个极为困难但却至关重要的领域。它包括生理学、神经病学以及对模糊、主观世界的感知。目前用于治疗慢性神经痛的药物只在一部分人身上获得成功,且具有一系列副作用。多年来,一直都认为慢性神经痛是由于传导痛觉信号的神经元出现超敏反应。这种观点正在慢
Science:鉴定出暴食神经元
2017年5月29日/生物谷BIOON/---在一项新的研究中,来自美国耶鲁大学医学院的研究人员发现激活大脑一个区域中的之前不与进食相关联的神经元能够让小鼠产生暴食行为。相关研究结果发表在2017年5月26日的Science期刊上,论文标题为“Rapid binge-like eating and body weight gain driven by zona incerta GABA neuro
J Biopsych:调节神经元回路能够帮助治疗酗酒症状
2017年5月26日/生物谷BIOON/---人类大脑的背侧纹状体区域对于增强人们的正向行为以及抑制负向的行为具有重要的作用。这一机制调控了人们的目的导向的行为,但同时也与药物以及酒精上瘾有莫大的联系。根据最近发表在《Biological Psychiatry》杂志上的一项研究,背侧纹状体的两类通路调节了这一过程:"go"通路起着油门的作用,负责正向行为的进行,而"no-go"通路则起着刹车的作用
科学家用病毒示踪和RNA测序精确定义了睡眠神经元
睡眠一直以来是人们比较感兴趣的研究课题,因为人的一生大约有1/3的时间是在睡眠中度过的。睡眠是每个人生命中的必需品,但它也困扰了很多人的日常生活。近几十年,随着脑电记录技术的发展,人们发现睡眠过程并不是一成不变的。从脑电的检查结果来看,正常人在睡眠时,存在两种截然不同的现象:有时眼球快速来回活动,被称作快速眼动期睡眠(REM),有时眼球不活动或者只有很慢的浮动,被称作非快速眼动期睡眠(NREM),
饮酒对神经元有保护作用?
过量饮酒对健康有着大范围的有害影响,但以往也有一些研究表明,适量饮酒能够对认知功能产生积极作用。一项最新研究调查了出现这种情况的可能原因。虽然饮酒的负面作用众所周知,但有一些研究表明,适度摄入红酒可能会延缓与年龄有关的认知功能障碍以及神经退行性疾病如阿尔茨海默氏病和帕金森氏病的发病。这些研究将适度饮酒定义为每天饮酒量在250毫升以下。这项最新研究成果发表在《营养学前沿》杂志
纳米线阵列,记录神经元活性的新神器
神经元可以接受刺激,产生兴奋并传导兴奋,是神经系统的基础。与神经元相关的疾病种类繁多,其中不少并没有有效的治疗方案。要开发治疗神经系统疾病的药物,一个重要的手段是监测神经元细胞对于候选药物的响应。目前记录神经元活性的方法多利用细胞内外离子浓度的差异,通过测量离子通道电流和细胞内电位的变化来评估神经元的健康状况以及对药物的响应。这种方法对电位变化敏感,且信噪比高。然而,这些技术的缺限在于:会破坏细胞