研究利用人工融合蛋白提高甲醇生物转化速度方面获进展
甲醇作为一种替代碳源,与现有发酵原料相比,具有来源丰富、价格低廉、还原性高等优势。因此,研究甲醇生物转化技术,发展基于甲醇的生物制造产业,具有重大的社会经济意义。甲醇氧化生成甲醛是甲醇生物转化的第一步,也是限速步骤。提高甲醇氧化速度,同时避免高毒性中间物甲醛的积累,是提高甲醇生物转化速度的关键。近日,中国科学院天津工业生物技术研究所研究员郑平带领的系统与合成生物技术研究团队和研究员孙际
囊获2期临床基因疗法 这家公司欲革新帕金森病治疗
日前,基因疗法公司MeiraGTx宣布收购Vector Neurosciences。通过此次收购,MeiraGTx将扩大其临床阶段候选产品,包括编码谷氨酸脱羧酶的腺相关病毒(AAV-GAD),用于治疗帕金森病。AAV-GAD已经完成2期临床试验,是首个成功进行随机、双盲、对照试验的用于脑部疾病的基因疗法候选产品。帕金森病在全世界影响约1000万人,它是仅次于阿兹海默病的第二
多篇文章解读近期人类囊性化疾病研究进展!
本文中,小编整理了近期科学家们在人类纤维化疾病领域的重要研究成果,分享给大家!【1】AJRCCM:纤维化发生的机制doi:10.1164/rccm.201708-1580OC先天性肺纤维化(IPF)是一种难以治愈的肺部疾病,起因不明且治疗手段有限。目前的研究表明信号分子WNT5A对于疾病的进展具有关键的作用。如今,来自德国的研究者们发现了该分子导致纤维化疾病发生的内在机制。IPF伴随着胞外小泡的数
在人类癌症患者中,癌细胞与免疫细胞融合在一起
2018年9月24日/生物谷BIOON/---一个多世纪以前,德国病理学家Otto Aichel吃惊地观察到癌细胞具有不同细胞类型(包括白细胞)的特征。这些数据让他提出癌细胞和白细胞之间的融合能够给肿瘤带来优势,使得它更容易在体内扩散。但是从那以后,人们很难找到癌细胞和免疫细胞融合在一起形成杂合体(hybrid,即下文中的hybrid cancer cell,也可译为杂合癌细胞)的证据。如今,Ai
囊获10项在研基因疗法 Amicus拓展罕见病管线
今日(9月21日),Amicus Therapeutics公司宣布,通过收购Celenex公司,它从全国儿童医院(Nationwide Children’s Hospital)和俄亥俄州立大学(Ohio State University)获得10个基因疗法项目的全球研发许可。其中治疗CLN6,CLN3,和CLN8 Batten病(Batten disease)的主打研究项目
Cell Rep:雌激素受体基因融合或是乳腺癌转移及致死性耐药性发生的“元凶”
2018年8月14日 讯 /生物谷BIOON/ --雌激素受体炎性(ER+)的乳腺癌是一种最常见的乳腺癌,这类乳腺癌对疗法产生耐受性非常普遍,而且最终会发展成为转移性癌症,成为诱发患者死亡的主要原因,近日,一项刊登在国际杂志Cell Reports上的研究报告中,来自贝勒医学院等机构的研究人员通过研究鉴别出了一种雌激素受体α基因(ESR1)易位事件,其或许不仅能驱动癌症产生耐药性,还会诱发ER+的
两篇Nature报道当16条染色体融合成一两条染色体时,酵母仍然能够生长和繁殖
2018年8月4日/生物谷BIOON/---科学家们成功地将酿酒酵母(Saccharomyces cerevisiae)的16条染色体融合在一起,从而培育出让几乎整个基因组仅存在于一到两条染色体上的新酵母菌株。含有融合染色体的酵母细胞并未表现出重大的生长缺陷,而且仅显示出微小的基因表达变化,这提示着活的有机体可能更加耐受染色体数量和结构的变化。2018年8月1日,两个独立的研究团队在两篇发表在Na
Molecular Therapy:脂质体纳米颗粒增强基因疗法治疗囊泡性纤维化的疗效
2018年6月26日讯 /生物谷BIOON /——尽管数年前研究人员就开始采用基因治疗纠正囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,CFTR)来治疗囊性纤维化,但是基因疗法治疗囊性纤维化的潜力并没有得到该有的关注。图片来源:Jerry Nick, M.D./ Wikipedia通过纳米颗粒输送mRNA是一种将遗
精准•创新•联动•融合,泛生子赴约太湖(马山)生命与健康论坛
四月无锡拈花湾,太湖(马山)生命与健康论坛圆满举行。 本次大会由无锡市政府主办,两院院士领衔,领域内著名专家学者、知名企业代表、著名投资和金融机构大咖共同参与此次盛会,其中中国工程院院士詹启敏教授、中国工程院外籍院士何大一教授、中国科学院院士韩济生教授、CFDA药品审评中心首席科学家何如意博士、中国药科大学校长来茂德教授、杜克大学医学院免疫学教授李启靖教授等,围绕多个专题分享解析了生物医
我国科学家发现脂肪储存新机制——脂滴融合
脂滴是一种由单层磷脂膜构成、主要起储存脂肪的细胞器,存在于大多数物种和细胞类型中。脂滴的大小和生长与肥胖密切相关,新生脂滴直径小至100纳米,但在成熟白色脂肪细胞中单室超大脂滴可达100微米,具备很强的储脂能力,其生长的分子机制尚不清楚。在973计划支持下,清华大学生命科学学院李蓬院士团队对脂滴生长和肥胖发生的分子机制展开了系统研究,提出了脂滴生长和脂肪储存的新机制——脂滴融合。在脂肪合成不足时,