J Neurosci:张永清等脑肿瘤抑制因子调控突触发育研究获进展
神经突触是神经元与其靶细胞之间进行信息交流的特化结构。突触生长过程的精确调控对于神经环路的形成和可塑性至关重要,突触发育和功能的异常导致多种神经精神疾病包括智力低下、自闭症、精神分裂症和神经变性病等。因此,寻找和鉴定突触发育和功能调控基因一直是神经生物学家的重要研究内容之一。
:遗传发育所脑肿瘤抑制因子调控突触发育研究获进展
神经突触是神经元与其靶细胞之间进行信息交流的特化结构。突触生长过程的精确调控对于神经环路的形成和可塑性至关重要,突触发育和功能的异常导致多种神经精神疾病包括智力低下、自闭症、精神分裂症和神经变性病等。因此,寻找和鉴定突触发育和功能调控基因一直是神经生物学家的重要研究内容之一。
Science:哺乳昼夜节律钟蛋白结构信息被破解
哺乳动物的昼夜节律,是由以约24小时为周期的自我调控转录反馈机制掌控的。该机制的关键组分是一个异二聚化转录活化因子,包含两个bHLH-PAS结构域蛋白亚基:CLOCK和BMAL1。 5月31日Science杂志在线发表了Nian Huang等的研究论文,以2.3埃米的分辨率解析了包含小鼠CLOCK:BMAL1 bHLH-PAS结构域的蛋白晶体复合物的结构生物学信息。
Nat Genet:发现调控心脏节律的新基因
在心电图测量中,QT间期是心脏电周期的一部分,代表心室的电除极和复极。QT间期延长表示心脏跳动功能不全,并容易导致心脏衰竭猝死的风险增加。
Cell Rep:饮食可影响人类机体的昼夜节律钟
食物不仅可以为我们机体供应能量,而且其也可以影响我们机体自身内部的生物钟,而生物钟可以调节人类行为及生物学许多方面的昼夜节律;近日,刊登在国际杂志Cell Reports上的一篇研究论文中,来自日本山口大学的研究人员通过研究揭示了如何通过饮食控制来调节我们机体的生物钟,这或许可以帮助治疗人类多种疾病,并且可以揭示胰岛素在重置生物钟过程中发挥的作用。
Nature:磷脂酰肌醇在突触形成过程中的作用
在中枢神经系统(central nervous system,CNS)的发育过程中,调控突触的数量和功能是至关重要的。本文研究组之前的研究表明,星形胶质细胞分泌的一些神经因子能促进兴奋性突触形成。其中凝血酶敏感素能够诱导形成突触结构,但是所形成的突触不具备传导兴奋的功能。 在本文中,研究者证明,星形胶质细胞分泌的磷脂酰肌醇4(Gpc4)和磷脂酰肌醇6(Gpc6)能够诱导形成有功能的突触。
:人类大脑起源于皮质突触发育延迟
近日,国际著名杂志《基因组研究》Genome Research杂志在线刊登了了中科院上海生科院计算生物学研究所Philipp Khaitovich研究组的最新研究成果“Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques,”文章中...
Nature:学习期间成簇的新突触
2月19日,Nature上的一篇研究表明,当动物学会做一项新任务时,脑细胞间新联接大脑中成群地出现。由圣克鲁斯加利福尼亚大学的研究人员领导,这项研究揭示了新运动记忆形成期间大脑回路如何被再接通。 研究人员对学习新行为的小鼠进行了研究,如伸过一个缝隙来取一粒种子。他们观察了学习过程中运动皮质的变化,其中运动皮质是控制肌肉运动的大脑层。
Biophysical :光照可控制心脏节律
最近,一项发表在《生物物理学杂志》上的研究称,人类心脏细胞跳动的节律可以由光线控制。斯坦福大学的研究人员将藻类的一个基因插入了人类的胚胎干细胞,之后又诱导胚胎干细胞分化成肌肉细胞。基因表达一种光敏感通道蛋白(channelrhodopsin-2),使得细胞通道可以在光的控制下自由关闭。 这项技术未来可用于激活人类的窦房结细胞。
PNAS:调节生物钟节律的关键分子
(图片来源:Proceedings of the National Academy of Sciences) 德州大学西南医学中心的Zheng Chen等近日在美国国家科学院院刊(Proceedings of the National Academy of Sciences)发表论文称,发现了调节生物钟节律的关键分子。改发现对生物钟研究具有重大意义。