打开APP

JBC:揭示核糖体或可作为抗击朊病毒疗法的新型靶点

2013年7月3日 讯 /生物谷BIOON/ --近日,来自瑞典乌普萨拉大学的研究者通过研究揭示,治疗神经变性的朊病毒疾病如疯牛病和克雅氏病或依赖于核糖体的帮助,核糖体是细胞的蛋白质合成机器,相关研究成果刊登于国际杂志Journal of Biological Chemistry上。 朊病毒病是一种由于朊病毒蛋白发生错误折叠引发的致死性神经变性疾病,朊病毒病的例子如羊瘙痒症、疯牛病和克雅氏病。

2013-07-04

Nat Commun:低温电子显微镜技术实现对耐药细菌核糖体的结构改变进行成像

刊登在国际杂志Nature Communication上的一篇研究论文中,来自慕尼黑大学的研究人员利用低温电子显微镜成像技术成功揭示了对红霉素耐药的细菌的核糖体结构变化的特性,这对于开发新型抵御耐药性细菌的抗生素提供了新的研究思路和希望。

2014-04-03

Nature:tmRNA助核糖体突破封锁实现蛋白质的合成

核糖体是活细胞的蛋白质制造工厂,它们以细胞中核苷酸的遗传密码子进行蛋白质的生产,当然,信使RNA(mRNA)提供蛋白质翻译的遗传密码,核糖体缠绕在信使RNA分子,通过识别起始和终止信号进行蛋白质的生产。如果一个信号缺失,蛋白质的生产就不能完成,这样一来,核糖体的生产模式就会被阻塞。

2012-11-18

Nat Stru& Mol Bio:秦燕等揭示核糖体对翻译因子调控的新机制

近日,国际著名杂志《自然—结构和分子生物学》(Nature Structural & Molecular Biology) 在线刊登了中国科学院生物物理研究所秦燕研究员的最新科研成果“A conserved proline switch on the ribosome facilitates the recruitment and binding of trGTPases,”,文章中...

2012-11-18

Nature:核糖体亚单元的结构

当翻译被启动时,只有核糖体的小亚单元结合到信使RNA (mRNA)上。一旦启动密码子被识别出来,通过沿着mRNA转位或“扫描”,大亚单元便会与小亚单元结合重组一个完整的核糖体。Ivan Lomakin 和 Thomas Steitz解决了与“启动因子tRNA”、mRNA以及启动因子eIF1 和 eIF1A形成复合物的真核生物小核糖体亚单元的三个结构。

2013-08-23

研究发现:缺乏两种小核糖核酸 会导致不孕

当代社会不孕症发病率有明显上升趋势,而无法顺利排卵是导致不孕症的重要原因之一。日本一个研究小组在动物实验中发现,如果缺乏两种特定的小核糖核酸(miRNA),会引发排卵障碍。 小核糖核酸是一类不编码制造蛋白质的单链核糖核酸分子,主要参与控制基因表达,调节各种基因的功能。研究小组在实验中发现,如果雌性实验鼠体内缺乏miR―200b和miR―429这两种小核糖核酸,就难以怀孕。

2013-08-20

Nature:能够“骗”过核糖体的异常碱基对

当信使RNA(mRNA)被翻译成蛋白时,蛋白编码序列的末端由一个“三碱基”终止密码子来指示。终止密码子不编码氨基酸,但最近的研究表明,将第一个碱基改为一个假尿苷(Ψ,核苷尿苷的C-糖苷异构体)将允许结合一个氨基酸,以使翻译能够越过终止密码子继续进行。

2013-08-06

Alnylam与世方药业合作开发治疗肝癌的核糖核酸干扰药物ALN-VSP

全球领先的核糖核酸干扰(RNAi)技术制药公司Alnylam Pharmaceuticals, Inc. 与中美合资的世方药业 (杭州)有限公司(Ascletis Pharmaceuticals (Hangzhou) Co., Ltd.)近日正式宣布结为战略合作伙伴,共同开发ALN-VSP用于治疗在中国临床需求未得到满足的各类肝癌包括原发性肝癌(HCC)。

2012-07-16

PLoS ONE:小核糖体RNA新概念

近日,国际学术期刊PLoS ONE在线发表了中科院上海生科院营养科学研究所翟琦巍研究组的最新研究进展:“Profiling and Identification of Small rDNA-Derived RNAs and Their Potential Biological Functions”,提出了小核糖体RNA (Small rDNA-Derived RNA,srRNA)这一新概念...

2013-03-14

JBC:发现核糖体蛋白L11与肿瘤抑制因子ARF有密切联系

p53因编码一种分子质量为53kDa的蛋白质而得名,是一种抗癌基因。其表达产物为基因调节蛋白(P53蛋白),当DNA受到损伤时表达产物急剧增加,可抑制细胞周期进一步运转。一旦p53基因发生突变,P53蛋白失活,细胞分裂失去节制,发生癌变。目前已知人类癌症中约有一半是由于该基因发生突变失活。 在应答于致癌压力时,肿瘤抑制蛋白ARF激活了p53,然而核糖体蛋白L11是在应答核糖体压力时诱导p53。

2012-11-18