打开APP

研究揭示肌醇多磷酸激酶IPMK抑制转录因子TFEB的液-液相分离调控自噬活性的机制

   近日,Developmental Cell发表了中国科学院生物物理研究所研究员张宏课题组题为Inositol polyphosphate multikinase inhibits liquid-liquid phase separation of TFEB to negatively regulate autophagy

2021-01-12

研究开发N-磷酸化蛋白质组深度覆盖分析新方法

近日,中国科学院大连化学物理研究所生物分子高效分离与表征研究组研究员张丽华和中科院院士张玉奎团队,发展出N-磷酸化肽段高选择性富集新方法,并结合肽段的高效分离和高灵敏度鉴定,实现了N-磷酸化蛋白质组的深度覆盖分析。与研究相对深入的发生在丝氨酸、苏氨酸和酪氨酸侧链氨基上的蛋白质O-磷酸化修饰相比,发生在蛋白质组氨酸、精氨酸和赖氨酸上的N-磷酸化修饰,由于P-N

2020-12-20

酶促不对称合成双手性中心γ-或δ-内酰胺研究获进展

手性内酰胺是药物和天然生物碱等生物活性化合物的重要骨架结构。目前,手性内酰胺主要通过基于C-C键生成的Michael反应和贵金属催化不对称氢化反应的化学方法进行合成,此类方法反应步骤较多、合成成本较高,难以大规模推广。利用亚胺还原酶或ω-转氨酶催化酮酯进行不对称胺化的酶促法生成γ-或δ-内酰胺的方法也被少量应用,但此方法只能形成一个手性中心,如何通过酶促法精

2020-11-22

一种特殊的宿主蛋白磷酸酶或能限制其机体的先天性免疫信号!

2020年12月7日 讯 /生物谷BIOON/ --衔接蛋白(adaptor proteins)STING和MAVS是诱导机体先天性免疫力的关键病原体感知途径的重要组成部分,任何一个衔接蛋白的磷酸化都会导致1型干扰素途径激活,而系统的过度激活往往与致命性的炎性疾病发生直接相关。系统的活性,尤其是先天性免疫衔接蛋白的活性必须被精细化地调控,从而才能够确保被感染

2020-12-07

磷酸化调控蛋白质结合机制研究取得进展

 近日,中国科学院精密测量科学与技术创新研究院理论与计算化学组副研究员段谟杰等利用计算模拟方法及增强采样技术,揭示磷酸化修饰对固有无序KID结构及其与KIX蛋白结合过程的调控机制。磷酸化修饰是生物体内常见的一种翻译后修饰,在调控信号转导及细胞生长和凋亡等过程中发挥重要作用。较多磷酸化位点位于固有无序蛋白或无序蛋白区域上。这些蛋白的高度动态及伸展特性

2020-11-01

胺脱氢酶合成手性胺醇化合物研究取得进展

手性胺醇化合物是合成较多重要药物的前体。目前,制备该类化合物主要通过传统化学法和生物酶拆分法,前者依赖重金属而后者转化率有待提高。经氨基酸脱氢酶(AADHs)定向进化而来的胺脱氢酶(AmDHs)能够以廉价的氨作为氨基供体,不对称还原胺化潜手性羟酮生成手性胺醇化合物,理论转化率可达100%,且副产物只有水,是理想的绿色合成途径。如何快速挖掘获得高性能AmDHs

2020-10-06

研究开发出检测酪氨酸磷酸化新方法

近日,中国科学院大连化学物理研究所生物分离与界面分子机制创新特区研究组研究员卿光焱与中药科学研究中心研究员梁鑫淼合作,在蛋白质磷酸化研究方面取得新进展,开发出一种智能聚合物功能化的仿生离子通道器件,实现了酪氨酸磷酸化的实时感知与测量,并在酪氨酸激酶抑制剂筛选中展现出较好的应用潜力。蛋白酪氨酸磷酸化是一种关键的细胞活动调节机制,异常的酪氨酸磷酸化与多种癌症的发

2020-10-05

酶促分子内不对称还原胺化构建手性1,4-二氮卓结构模块研究获进展

失眠是常见的一种睡眠障碍,在人群中发病率高。苏沃雷生是一类新型的催眠药,2014年获得美国FDA批准用于治疗难以入睡或维持睡眠的首个食欲素受体拮抗剂。但苏沃雷生的关键结构单元手性1,4-二氮卓环的高效合成仍具挑战性。中国科学院天津工业生物技术研究所研究员朱敦明、吴洽庆带领的生物催化与绿色化工团队,继利用亚胺还原酶催化不对称还原α, β-不饱和亚胺合成吗啡烷关

2020-08-07

PNAS: 磷酸化蛋白可作为癌症治疗生物标志物

癌症治疗中的精密医学指的是利用癌细胞中的遗传变异为个别患者选择最佳疗法。

2020-07-29

研究借助磷脂表面分子手性调控淀粉样蛋白纤维化过程

近日,中国科学院大连化学物理研究所生物分离与界面分子机制研究组研究员卿光焱团队和分子模拟与设计研究组研究员李国辉团队合作,设计和制备了一对手性氨基酸修饰的磷脂分子,并以此构筑手性磷脂表面,实现了对β-淀粉样蛋白(Aβ)纤维化过程的精确调控。阿尔茨海默病(AD)是痴呆症最常见的形式,也是全球公共卫生挑战之一,目前AD发病机理尚不清楚。研究表明,细胞膜在AD的发

2020-07-10