打开APP

Science:剑桥科学家首次通过人造大肠杆菌,实现病毒抵抗以及人工聚合物合成

大肠杆菌作为一种重要的模式工业微生物,在医药、化工、农业等方面具有广泛的应用。近30年来,多种代谢工程改造的新策略和新技术,被用于设计、构建和优化大肠杆菌细胞工厂,极大地提高了生物法合成化学品的生产速率和产量。不过,此前对于大肠杆菌的利用,仅局限在自然界中存在的物质上,无法满足人们对于化工生产的需求。长期以来,科学家一直努力改造大肠杆菌,试图让它按照人们的设

2021-06-10

研究构建一套有机半导体材料赋能大肠杆菌光驱动产氢体系

近日,中国科学院深圳先进技术研究院合成所副研究员王博团队联合江苏大学教授姜志锋、香港中文大学教授Po Keung Wong构建了一套简易高效的有机半导体材料(碘掺杂水热碳,I-HTCC)“外挂式”赋能大肠杆菌光驱动产氢体系,并以Interfacing iodine-doped hydrothermally carbonized carbon with Esc

2021-05-05

Nat Commun:高通量筛选揭示肠炎患者体内大肠杆菌感染的内在机制

粘附侵袭性大肠杆菌(AIEC)是克罗恩氏病患者(一种常见的肠道炎症)体内常见的致病菌。尽管这类病原菌与共生性的大肠杆菌具有很多表型方面的差异,通过基因组学的手段往往难以区分这两种不同的亚群,因而导致难以鉴定出关键的致病因子。在最近发表在《Nature Communications》杂志上的一篇研究中,来自加拿大McMaster大学的Brian K. Coom

2021-04-04

研究人员利用温控动态调控开关在大肠杆菌实现聚羟基脂肪酸酯的精确组装

  合成生物学通过构建各类动态调控系统控制精确调控代谢通路,实现目标产物的生产和特定的细胞行为。然而在代谢工程领域,由于实验室构建的基因线路往往缺少鲁棒性,要想在大体积的发酵体系中实现生长对数期的中后期的动态调控依然有很大的挑战。简单的化学诱导开关由于诱导物的高成本、不可移除性已经不能满足生物生产的需求;光诱导系统在高细菌密度时难以穿透发

2021-03-23

研究实现重组大肠杆菌MG1655高产IAA

福建师范大学生命科学学院工业微生物教育部工程中心黄建忠教授团队祁峰副教授等在食品和农业工程技术领域刊物《Journal of Agricultural and Food Chemistry》(SCI一区,Top, IF=4.192) 发表题目为“High-level production of indole-3-acetic acid in the meta

2021-02-14

研究构建高效利用氢气的大肠杆菌底盘细胞

 氢气广泛存在于地质储层、工业副产品和自然发酵反应中,这使得它成为提高厌氧发酵还原性产物效率的一个潜在理想补充底物。尽管氢气已广泛应用于工业和制药原料生产过程中,但在微生物细胞工厂中尚未实现有效利用。中国科学院天津工业生物技术研究所研究员张学礼、毕昌昊团队通过在大肠杆菌中提高氢化酶蛋白编码基因的表达水平,实现内源性氢化酶Hyd-1和Hyd-2的高效

2020-12-18

Nature:科学家成功绘制出大肠杆菌的功能性蛋白质组蓝图 有望揭示细胞中不同基因的功能及互作机制

2020年12月14日 讯 /生物谷BIOON/ --理解基因的工作机理以及其如何与另一个基因之间发生相互作用是从事生物学研究的科学家们想要实现的一个主要目标,当然了,这在方法和所需要的的实验数量上都能带来巨大的挑战,而最近的研究进展已经改变了科学家们绘制基因功能和相互作用图谱的能力,近日,一篇刊登在国际杂志Nature上的研究报告中,来自欧洲分子生物学实验

2020-12-14

大肠杆菌新型宽范围木糖生物传感器的设计和优化方面取得新进展

近日,国际合成生物学领域权威期刊《ACS Synthetic Biology》在线发表了上海交通大学生命科学技术学院赵心清教授与美国德克萨斯大学奥斯汀分校Hal Alper教授的合作研究成果“Design, evolution, and characterization of a xylose biosensor in Escherichia coli us

2020-10-16

Cell:经过基因改造的大肠杆菌也可通过摄入空气中的二氧化碳进行生长

2019年12月29日讯/生物谷BIOON/---在一项新的研究中,来自以色列魏茨曼科学研究所的研究人员对大肠杆菌进行基因改造,使得它们通过吸收二氧化碳就可以生长。相关研究结果近期发表在Cell期刊上,论文标题为“Conversion of Escherichia coli to Generate All Biomass Carbon from CO2”。大

2019-12-29

德科研人员通过编码大肠杆菌获取可医用贻贝超级生物胶

 据德国生物经济网站(biooekonomie)近日报道,柏林工业大学(TU Berlin)的研究人员成功获取贻贝足丝粘蛋白,可作为贝类超级生物胶(Muschel-Superkleber)用于伤口和骨折愈合。研究人员发现,贝类动物无论在海底还是在石头、金属或塑料等任何环境或材料表面都能牢固附着的原因是足部能分泌一种具有极强粘附性的蛋白。粘合能力强且具有生物兼容性的粘合剂非常适用于外科手术

2019-11-22