人类和动物的杂交即将到来,并可能被用于种植器官移植,我们应该担心什么?
2019年月13日讯 /生物谷BIOON /——全世界有成千上万的人在等待器官捐献。虽然其中一些人会及时接受他们需要的器官移植,但可悲的现实是,许多人将在等待中死去。但有争议的新研究可能提供了解决这一危机的方法。日本最近推翻了禁止创造人与动物杂交的禁令,并批准了东京大学研究人员提出的创造人与老鼠杂交的要求。科学家们将尝试用一种被称为"诱导多能干细胞"的干细胞在老鼠体内培养人类胰腺。这些细胞几乎可以
日本首次批准在动物身上种植人体器官!
2019年9月5日讯 /生物谷BIOON /——日本科学家将在获得政府批准后,开始在动物身上培育人体器官。这项前沿但颇有争议的研究涉及将人类"诱导多能干细胞"(ips)植入修改过的动物胚胎中,诱导多能干细胞可以被诱导形成身体任何部位的构建模块。研究人员警告说,未来人类器官移植可以在动物体内生长,这是漫长道路上的第一步。由斯坦福大学遗传学教授Hiromitsu Nakauchi领导的这项研究,是在日
基于微流控技术的机体/器官芯片在药物开发中的应用
2019年8月16日讯 /生物谷BIOON /——器官芯片,作为一种基于微加工技术的的微流体器件,近年来在体外器官模型得到了广泛的研究。由于它可能在物理和化学方面采用微流体装置技术模拟体外环境,因此维持可以通器官芯片来维持细胞功能和形态,并复制器官间的相互作用。来自日本东海大学(Tokai University)和东京大学(The University of Tokyo)的研究人员发表了一篇综述文
哪些身体器官在高温下最危险?
2019年8月23日讯 /生物谷BIOON /——2019年6月,欧洲大部分地区遭遇了早期热浪,法国的气温达到了创纪录的46摄氏度(115华氏度)。热浪的特点是在几天几夜持续高温。它们对我们的日常生活有重要的影响--我们感到过热和疲劳。当热浪来袭时,许多政府会启动一项"热行动计划",建议受影响的人多喝水,避免剧烈运动,保持凉爽。如果不这样做,就有中暑的风险,而中暑有可能危及生命。但是,人体究竟是如
皮肤中发现新的疼痛器官!
2019年8月19日讯 /生物谷BIOON /——瑞典卡罗林斯卡学院的研究人员发现了一种新的感觉器官,它可以检测到疼痛的机械损伤,比如刺痛和撞击。这项发现发表在《Science》杂志上。疼痛造成痛苦,并给社会带来巨大的经济损失。几乎每五个人中就有一个人经历持续的疼痛,因此很有必要寻找新的止痛药物。然而,对疼痛的敏感也是生存所必需的,它具有保护功能。它能促进防止损伤组织的反射反应,比如当你感到被尖锐
仿生微流控肝芯片研究进展
肝脏是机体的代谢中枢,它合成血浆蛋白、调节糖原储存、生成激素,也是药物代谢和解毒的主要场所。肝脏毒性是化合物和药物常见的毒性反映,是临床前评估的一个重要指标。传统上,临床前评估通过动物实验进行检测,但是其昂贵的费用、耗时耗力、与人体反应对应性低以及动物福利等伦理方面的问题,使得寻求新型高效的体外评价方法成为一个重要的发展趋势。仿生微流控器官芯片是2011年以来快速发展的一个
科学家们如何利用3D打印技术打印出具有成熟形态的机体组织器官?
2019年8月19日 讯 /生物谷BIOON/ --3D打印技术的快速发展使得直接利用细胞和聚合物材料的活性油墨打印器官样、细胞致密组织的前景更加广阔,当活性油墨被置于生理条件下时,细胞就会在聚合物基质上施加机械力并动态改变墨水的形状和机械性质,为了帮助3D打印在组织工程中的发展,研究人员就需要对活性墨水的特性进行定量分析理解,以便其一旦被放入培养基中就能够有效预测并控制形状的演变。图片来源:Mo
微流体芯片在用于癌症液体活检的胞外囊泡分离和分析中的应用
2019年8月9日讯/生物谷BIOON/---胞外囊泡(extracellular vesicle, EV)正在成为癌症液体活检中有前景的生物标志物。从细胞培养基或生物液体中分离出高纯度和高质量的EV仍然是一项技术挑战。在过去十年中,人们已开发出基于微流体的EV操纵技术。迄今为止开发出的基于微流体的EV分离技术能够分为两类:表面生物标志物依赖性的方法和尺寸依赖性的方法。微流体技术允许在单个芯片上集
我们为什么需要捐赠器官?
2019年7月23日讯 /生物谷BIOON /——在英国,大约有六分之一的等待器官移植的人会在器官移植前因健康状况恶化而死亡或丧失资格。许多人将这种情况归咎于英国目前的"自愿"捐献计划--如果你想在死后捐献器官,你必须得到明确的许可。但这种情况即将改变。从2020年4月起,所有居住在英国的18岁以上的人,在法律上都将被视为同意死后捐献器官。如果他们不想成为捐赠者,人们将不得不"选择退出"。图片来源
借助磁控微流控芯片,建立埃博拉病毒核酸适配体的高效筛选平台
埃博拉病毒是一种高致病性传染病,高亲和力和特异性的亲和试剂对其防控具有重要的意义。近日,武汉大学生物医学分析化学教育部重点实验室研究人员通过借助磁控微流控芯片,建立了一个针对埃博拉病毒核酸适配体的高效筛选平台。核酸适配体因其具有体外筛选、化学合成等特点,能够为病毒的检测提供一种性能优异的亲和试剂。然而,核酸适配体的筛选效率是其广泛应用的一个重要瓶颈。为提高其筛选效率,严苛的筛选条件是其