Nature:核糖体停顿+蛋白质失衡,时间这把“杀猪刀”!
衰老伴随着细胞蛋白质稳态(proteostasis)的降低,构成许多与年龄相关的、蛋白质错误折叠疾病的病理基础。然而,衰老如何破坏蛋白平衡的机制仍不清楚。与成熟蛋白质相比,新生多肽更容易发生错误折叠,因此成为蛋白质稳态调控网络的重大负担。在翻译延伸过程中,核糖体的速度在位置上是可变的,而这些局部的变化影响着共翻译转运(蛋白质一边翻译一边转运到内质网)过程。一
科学家揭示了肿瘤免疫治疗中肿瘤外泌体对NK细胞的影响
肿瘤来源的外泌体(TDEs)在癌症生物学的多个方面发挥着重要作用,有很多研究结论明显显示,TDES还可以通过负面影响抗肿瘤免疫来促进肿瘤生长。
以circRNA和外泌体调节元件为靶点的反义寡核苷酸将成为一种新的抗肿瘤策略
环状RNA(CircRNAs)由一大类无5‘末端帽和3’末端聚(A)尾的非编码RNA组成,它们由RNA聚合酶II通过反向剪接转录而形成共价闭合的RNA环。随着下一代测序技术的发展,特别是无rRNA测序技术的应用,在真核生物中发现了大量的CircRNA。
Science:揭示人类卵母细胞缺乏马达蛋白KIFC1,经常组装出不稳定的纺锤体
在一项新的研究中,由德国马克斯-普朗克多学科研究所(MPI)的Melina Schuh博士领导的一个研究团队发现人类的卵子缺少一种重要的蛋白,它充当着马达蛋白的作用。这种马达蛋白有助于稳定在细胞分裂过程中分离染色体的复合物。这一发现为开发减少人类卵子中染色体分离错误的治疗方法开辟了新途径。
Molecular Cancer重磅综述: 外泌体的产生到临床应用
缺氧是肿瘤微环境(TME)的显著特征。肿瘤细胞在面临选择性压力时,表现出多种适应性特征,如肿瘤标志物的表达发生变化(增殖增加、凋亡抑制、免疫逃避等),细胞间通讯更加频繁。
Nature:揭示核糖体在年龄相关疾病中的作用
关于衰老如何导致蛋白聚集的机制在很大程度上仍然未知的。在一项新的研究中,来自美国斯坦福大学的研究人员将这一问题归结为产生新蛋白的细胞机器因年龄而受损。
Nat Commun:揭示肠道中的压力影响机体染色体遗传性的分子机制
来自科隆大学等机构的科学家们通过研究发现,来自肠道细胞中的信号或许会明显影响秀丽隐杆线虫中受损卵细胞是否会被清除。
PPARα−ACOT12轴通过调节新生脂肪生成来维持软骨内环境的稳定
在这里,在ppara敲除小鼠中,作者发现dnl的增加刺激了软骨的降解,并确定acto12是一个关键的调节因子。
Sci Adv:不同动物机体的染色体6亿多年来几乎没有发生变化
来自维也纳大学等机构的科学家们通过研究比较了不同动物群体的染色体得到了一项非常惊人的发现,即每个动物物种都有几乎相同的染色体单元,其会反复出现,且自从第一批动物在大约6亿年前出现以来,情况一直如此,利用这种新的原理,人类的染色体或许就会被剖析为这些原始的“元素”。