肠道微生物和免疫治疗现神之汇合 | 临床大发现
“这位先生,请留步,我希望能跟你讲一下我们的天父和救主,克苏鲁……”抱歉,章鱼同志您走错片场了。克苏鲁神话不过是小说家的杜撰,但奇点糕越来越觉得,我们的身体里就有着这样一群主宰者的存在。没错,就是肠道微生物这些磨人的小妖精,说它们是科研界的最高频词汇毫不为过:为什么微生物研究最近在医疗科技界火的一塌糊涂?奇点糕们给大家带来的关于肠道微生物与疾病的研究也是数不胜数,肥胖、糖尿病、帕金森病、炎症性肠病
你的诞生可能不是一场意外,而是基因「有意」为之
人是什么?生命有意义吗?人类终将走向何方?英国著名的演化生物学家理理查德·道金斯选择在其着作《自私的基因》一书中表达了自己的观点。他认为,生命是基因创造的生存机器,人类不过是基因的载体,保存它们才是我们存在的终极理由。生命短暂,而基因不朽。而基因之所以自私,是因为它们只顾自己能更好的生存,在自然选择的条件下,随机突变不断的进化,不管这一进化是否适合宿主生存。而现在,科学家发现,基因的自私不仅仅停留
厦门大学吴乔教授:与谜之受体的20载未了缘
Nur77是一个“孤独”的受体。从真核细胞诞生之初,它就不断游走于细胞核与胞浆甚至细胞器之间,至今人类仍然无法找到它的内源性配体,所以它成为了孤儿核受体超家族中的一员。Nur77也是一个忙碌的受体,它不仅广泛表达于肌肉、腺体、内脏,还在多种疾病的发生发展过程中扮演着促进或者抑制的双重角色。Nur77还是一个神秘的受体,它既可以作为核转录因子参与细胞增殖,也可以在受到特定刺激时作为调控因
非编码RNA之piRNA最新研究进展
2017年10月31日/生物谷BIOON/---Piwi互作RNA(piRNA)是近年来新发现的一类小RNA分子,主要在生殖细胞系中表达,对于维持生殖系DNA完整、抑制转座子转录、抑制翻译、参与异染色质的形成、执行表观遗传调控和生殖细胞发生等均有重要作用。过去的研究表明,生殖细胞特异性表达的PIWI家族蛋白是piRNA作用途径的中心,为piRNA生物生成及功能所必需。小鼠PIWI家族包括MILI、
非编码RNA之环状RNA最新研究进展
2017年10月31日/生物谷BIOON/---环状RNA(circRNA)是一类不具有5' 末端帽子和3' 末端poly(A)尾巴、并以共价键形成环形结构的非编码RNA分子。环状RNA是区别于传统线性RNA的一类新型RNA,具有闭合环状结构,大量存在于真核转录组中。大部分的环状RNA是由外显子序列构成,在不同的物种中具有保守性,同时存在组织及不同发育阶段的表达特异性。大部分环状RNA在细胞浆中富
非编码RNA之snRNA和snoRNA最新研究进展
2017年10月31日/生物谷BIOON/---细胞内有小核RNA(small nuclear RNA, snRNA)。它是真核生物转录后加工过程中RNA剪接体(spilceosome)的主要成分。现在发现有五种snRNA,其长度在哺乳动物中约为100-215个核苷酸。snRNA一直存在于细胞核中,与40种左右的核内蛋白质共同组成RNA剪接体,在RNA转录后加工中起重要作用。小核仁RNA(smal
非编码RNA之lncRNA最新研究进展(第2期)
2017年10月31日/生物谷BIOON/---长链非编码RNA(long noncoding RNA,lncRNA)是一类不编码蛋白的RNA分子,长度在200bp以上;研究表明,lncRNA具有保守的二级结构,可以与蛋白、DNA和RNA相互作用,参与多种生物学过程的调控。国际著名的非编码RNA数据库NONCODE中显示,目前人类和小鼠的长非编码RNA基因的数目分别为56018和46475个。ln
非编码RNA之lncRNA最新研究进展(第1期)
2017年10月31日/生物谷BIOON/---长链非编码RNA(long noncoding RNA,lncRNA)是一类不编码蛋白的RNA分子,长度在200bp以上;研究表明,lncRNA具有保守的二级结构,可以与蛋白、DNA和RNA相互作用,参与多种生物学过程的调控。国际著名的非编码RNA数据库NONCODE中显示,目前人类和小鼠的长非编码RNA基因的数目分别为56018和46475个。ln
揭示控制体重的GDF15信号通路,有望治疗肥胖和恶病质
图片来自NGM生物制药公司。2017年10月5日/生物谷BIOON/---在一项新的研究中,来自美国NGM生物制药公司(NGM Biopharmaceuticals)、XTAL生物结构公司(XTAL Biostructures)和默克研究实验室(Merck Research Labs)的研究人员深刻地揭示出一种鲜为人知的人体激素在调节体重中发挥的作用。这种被称作生长与分化因子15(Growth a
Cell:揭示出组织分枝模式的简约之美
图片来自Nature, doi:10.1038/nature210462017年9月19日/生物谷BIOON/---在一项新的研究中,来自英国剑桥大学的研究人员针对一种困惑着生物学家数个世纪的难题---组织的复杂分枝模式(branching pattern)如何产生---提出一种非常简单的解决方案。相关研究结果将发表在Cell期刊上,论文标题为“A unifying theory of branc