打开APP

抗生素耐药导致更多COVID-19患者死于继发感染!

2020年4月2日讯 /生物谷BIOON /——继发性细菌感染是问题的一部分,我们需要加强新药的研究来对抗它们。在四个月内,COVID-19改变了世界。数**死亡,数十亿人被隔离,全球经济损失了数万亿美元。恢复控制将取决于我们是否有能力模拟和实施有效的物理隔离措施,提供足够的呼吸器和防护装备,维持运转的卫生系统,并开发有效的疫苗、治疗方法和快速诊断。控制的关

2020-04-02

NEJM:Fostemsavir治疗多重耐药性HIV-1感染有奇效

根据3月26日发表于《New England Journal of Medicine》杂志上的一项研究中,在接受治疗的头八天中,接受Fostemsavir治疗的多重耐药HIV-1感染患者的前8天与安慰剂组相比,HIV-1 RNA的下降幅度明显更大。

2020-03-27

GSK首创附着抑制剂fostemsavir治疗多重耐药HIV感染者展现强劲疗效!

2020年3月29日讯 /生物谷BIOON/ --ViiV Healthcare是一家由葛兰素史克(GSK)控股、辉瑞(Pfizer)和盐野义(Shionogi)持股的HIV/AIDS药物研发公司。近日,该公司在研药物fostemsavir治疗多重耐药HIV感染者的关键性III期临床研究BRIGHT(NCT02362503)的数据发表于国际顶级医学期刊《新英

2020-03-30

被忽视的细胞信使有助于治疗耐药性细菌感染

在最近一项研究中,来自国家儿童医院的研究人员首次从健康捐献者的血液中分离出细菌性细胞外囊泡,这是更好地了解肠道细菌通过血液与身体其他部位沟通的方式的关键一步。 几十年来,研究人员一直认为循环细菌的细胞外囊泡是令人烦恼的漂浮物, 然而,随着研究的深入,人们日益认识到,细胞外囊泡实际上有助于细胞内通讯。

2020-03-20

EMBO Mol Med:揭示癌症如何学会对化疗耐药

2020年3月14日讯 /生物谷BIOON /——根据一项对从人体采集、然后在实验室中培养的细胞进行的研究,化疗可以使卵巢癌细胞对进一步治疗产生耐药性,但阻断特定的细胞通路可能会使它们再次变得敏感。图片来源:Steve Gschmeissner大多数晚期癌症,包括卵巢癌,最终会对治疗产生抗药性。卡罗林斯卡学院(Karolinska Institute)的Ka

2020-03-14

研究发现新的抗衰老靶标基因

2月27日,《自然》期刊在线发表了题为《两个保守的表观遗传调控因子妨碍健康衰老》的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室蔡时青研究组与中国科学院上海巴斯德研究所江陆斌研究组合作完成。衰老是生物体随时间推移各项生理功能逐渐退化,最后死亡的生理过程;衰老也是一些慢性疾病,如阿尔

2020-03-01

Ange Chem Int Ed:科学家有望将化疗和光动力疗法整合成为单一药物疗法来治疗耐药性癌症

2020年3月18日 讯 /生物谷BIOON/ --近日,一篇刊登在国际杂志Angewandte Chemie International Edition上的研究报告中,来自巴黎文理研究大学的科学家们通过研究发现,利用不同药物的组合或有望抵御某些癌症类型对药物的耐受性,为了开发一种有效的治疗方法,化学家们就需要开发一种化学共轭物,来利用不同的作用模式攻击多种

2020-03-18

Science子刊;靶向基质细胞克服胶质瘤耐药

2020年3月2日讯 /生物谷BIOON /——致命的脑癌胶质母细胞瘤(GBM)通常可以耐受化疗和放疗,但宾夕法尼亚大学佩雷尔曼医学院和宾夕法尼亚大学的艾布拉姆森癌症中心的最新研究显示针对基质细胞--组织中的结缔组织细胞--可以成为一种有效地克服癌细胞耐药的新方法。具体来说,研究人员发现,GBM使这些基质细胞像干细胞一样活动,自然地抵抗杀死它们的企图,反而促

2020-03-02

Nat Commun:揭秘癌细胞耐药的新机制 通过以死亡的癌细胞为食物得以生存!

2020年3月7日 讯 /生物谷BIOON/ --在人类与癌症的斗争中,耐药性一直是我们所面临的一项重大挑战,近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自加利福尼亚大学等机构的科学家们通过研究开发了一种新方法或能克服癌症耐药性的障碍;研究者揭示了一种特殊机制,该机制能促进疾病细胞通过清理死亡细胞碎片来获取营养物质,相

2020-03-07

ACS Nano 细菌粉碎技术对抗超级耐药细菌

2020年2月24日讯 /生物谷BIOON /--研究人员利用液态金属开发了新的杀菌技术,这可能是解决抗生素耐药性这一致命问题的答案。这项技术使用磁性液态金属的纳米颗粒来粉碎细菌和细菌生物膜--细菌茁壮成长的保护性"房子"--而不伤害有益细胞。这项由RMIT大学领导的研究发表在ACS Nano杂志上,为寻找更好的抗菌技术提供了一个突破性的新方向。图片来源:A

2020-02-24