研究报道人源DUOX1复合体的高分辨率结构
ROS(活性氧)是化学反应活性很高,并且以氧元素为主的一系列化合物,包括过氧化氢、超氧阴离子等,它们参与众多生物学过程,同时也是一种重要的信号分子[1]。在生物体内,有很多氧化还原反应可以作为副产物产生ROS,比如线粒体呼吸链和P450氧化还原酶等。除此之外,还有一种专门产生ROS的酶即NADPH氧化酶(NOX
研究人员开发出深度学习超分辨显微成像方法
中国科学院生物物理研究所、广州生物岛实验室研究员李栋课题组,与清华大学自动化系、脑与认知科学研究院教授戴琼海课题组,在Nature Methods上以长文(Article)形式发表了题为Evaluation and development of deep neural networks for image super-resoluti
Cell:开发出一种自动化的电子显微镜平台,可高分辨率地重建神经回路图谱
2021年1月17日讯/生物谷BIOON/---神经元网络是如何连接成功能性神经回路的呢?这一直是神经科学领域的一个长期问题。为了回答这个基本问题,来自美国波士顿儿童医院和哈佛医学院的研究人员在一项新的研究中开发了一种新的方法来研究这些神经回路,并在这个过程中更多地了解关于它们之间的连接。相关研究结果于2021年1月4日在线发表在Cell期刊上,论文标题为“
Nat Commun:科学家首次实现对细胞膜进行超高分辨率成像及分析
2020年12月8日 讯 /生物谷BIOON/ --近日,一篇发表在国际杂志Nature Communications上的研究报告中,来自维尔茨堡大学等机构的科学家们通过研究实现了在超分辨率下对细胞膜进行观察;研究者表示,扩张显微镜(Exm,Expansion microscopy)能以远低于200nm的空间分辨率对细胞及其组分进行成像,为此,所研究样品的蛋
超高分辨率荧光显微技术前沿与生物学应用
超高分辨率荧光显微成像可以说是近二十年来新兴的一项革命性技术,此前光学显微镜的分辨率只能达到200纳米,被称为阿贝衍射极限,而通常病毒和亚细胞结构的尺寸只有几十到200多纳米。超高分辨显微技术的诞生突破了这个极限,使得显微成像分辨率进入振奋人心的纳米级别时代,对于精细结构的研究得到了强力的技术支持。目前商业化比较常见的超高分辨荧光显微技术主要包括受激发射耗损
研究报道NALCN-FAM155A亚通道复合体的高分辨结构
2020年12月3日,北京大学未来技术学院分子医学所陈雷研究组在Nature Communications杂志上报道了哺乳动物NALCN-FAM155A亚通道复合体的高分辨结构。本项研究使用单颗粒冷冻电镜技术来探究NALCN的工作机制。由于NALCN-FAM155-UNC79-UNC80四元复合体不够稳定,作者在此聚焦于较稳定的NALCN-FAM
单个生物大分子太赫兹超分辨成像研究取得进展
中国科学院重庆绿色智能技术研究院、中国科学院大学重庆学院、中科院上海高等研究院清华大学和上海交通大学共同攻关,在单个生物大分子的太赫兹超分辨光谱成像研究中取得进展。单个生物大分子的太赫兹探测有望揭示传统单分子技术难以提供的生物大分子的物理化学、结构及生物分子间相互作用等信息,对深入认识和理解生物大分子的作用与功能具有重要意
Science:新型高分辨率植入物使得通过大脑电刺激恢复视力成为可能
2020年12月6日讯/生物谷BIOON/---通过大脑植入物恢复盲人的视力即将成为现实。在一项新的研究中,来自荷兰神经科学研究所等研究机构的研究人员发现新开发的高分辨率植入物使得视觉皮层识别人工诱导的形状和感知对象成为可能。相关研究结果发表在2020年12月4日的Science期刊上,论文标题为“Shape perception via a high-ch
超高分辨光学成像研究取得进展
基于单分子定位的超高分辨率显微成像技术(例如PALM、STORM、directSTORM等)已达10 nm左右的光学分辨率。然而,要获得超高分辨率图像,需要较长的采集时间(1-30分钟),而样品漂移(通常1 nm/s)会对此产生影响。目前,加入外源标准参照物(荧光小球、金属纳米颗粒等),引入基于额外近红外监测轴向焦平面变化的商用漂移校正系统,或使
香港科大利用双光子显微内镜实现高分辨率深层脑成像
香港科技大学利用自适应光学技术,实现高分辨率神经突触成像。双光子显微镜技术的进步带来了更高的分辨率和功能成像,从而帮助研究人员展开大脑功能和神经活动的研究。然而,双光子方法受到激发光子和发射光子极度衰减的影响,限制了可以分析的组织深度和对大脑皮层的成像。内窥镜检查可能是探测器官深层区域的更好解决方法。据麦姆斯咨询报道,香港科技大学(Hong Ko