新型微型半导体生物芯片或能有效鉴别出多重耐药病原体
2018年8月22日 讯 /生物谷BIOON/ --如今,不断进化的耐多药病原体日益引起全球的关注,耐药病原体的出现速度远远超过了科学家们发现新药的速度,而且常规的抗生素并不能有效治疗这些病原体引发的多种疾病;开发用于临床应用的综合诊断技术对于有效控制不断升级的健康风险至关重要,当前诊断感染性疾病的实验室检测技术常常是基于培养的方法来进行的,而这种方法需要几天才能够得出检测结果。而快速的分子诊断技
Nat Microbiol:利用计算机模拟预测HIV在人群中的扩散
2018年8月8日/生物谷BIOON/---在一项新的研究中,来自美国洛斯阿拉莫斯国家实验室的研究人员证实计算机模拟能够准确地预测HIV在人群中的传播,这可能有助于预防这种病毒感染。这些模拟结果与从洛斯阿拉莫斯国家实验室开发和维持的一个全球公共HIV数据库中获得的实际DNA数据相一致。这个数据库含有84多万个已发布的用于科学研究的HIV序列。相关研究结果于2018年7月30日在线发表在Nature
需求为导向,设计是核心,具体问题具体分析 ——2017微流控芯片前沿研讨会 讨论精彩回顾
传统的生命科学分析方法需要复杂的样品制备和仪器分析过程,耗时费力。微流控具有微型化、集成化等特征,结合其独特的分析性能,可极大的优化检测过程。2018(第二届)微流控技术前沿研讨会(上海,8月17-18)集中展示了近年来我国微流控芯片研究取得了突破性进展,体现了微流控最新最前沿的技术应用,力求推动国内微流控技术在医学、生命科学等相关领域的快速发展。2018(第
融智生物推出可同时检出15项呼吸道病原体的快速检测芯片
急性气管、支气管炎和支气管哮喘等呼吸道感染疾病对我们的生活造成极大的困扰,细菌、病毒和支原体、衣原体均会对人体产生作用, 引发呼吸道感染。在国内的临床诊断中,限于诊疗条件,很多呼吸道感染患者无法接受更准确的诊断,往往采用广谱抗生素类药物治疗,不但难以达到最佳治疗效果,严重者还可能因此耽误病情,或者造成超级耐药菌出现。基于融智生物2017年推出的微流控核酸定量分析平台Quan
微流控芯片助力构建体外类生命系统
小编推荐会议:2018(第二届)微流控技术前沿研讨会近日,国际学术期刊Biomaterials Science 以inside back cover的形式刊载了中国科学院沈阳自动化研究所微纳米课题组在体外类生命系统构建领域的最新成果。该研究基于光诱导微流控芯片,利用动态变化的数字光掩膜,实现了多维水凝胶结构的层层微制造,并且具备非紫外、快速、灵活、可重构的优点,为建立体外类生命系统、生物器官模型等
利用太赫兹微流控芯片进行溶液测量
小编推荐会议:2018(第二届)微流控技术前沿研讨会 来自大阪大学的研究人员研发出一种非线性光学晶体芯片(NLOC),将太赫兹光波与微流控装置结合,并充分利用了太赫兹光源与微通道内被测物质溶液的紧密近场性。他们的研究发表在最近一期APLPhotonics杂志上。“采用这项技术,即便样本少于一纳升,我们也可以探测出几飞克分子的溶液浓度,”通讯作者MasayoshiTonouch
微流控芯片细胞分析
小编推荐会议:2018(第二届)微流控技术前沿研讨会 中国有句谚语,“工欲善其事,必先利其器”,为了阐明细胞的生命过程,需要特殊的工具。细胞作为生命组成的最小单元,研究其相关的生物行为及其规律与本质,对于揭示生命的奥秘,探索疾病的机理与治疗手段,提高人类的生存寿命与质量,都有着重要的意义。对细胞的研究是一个复杂的工程,细胞在人体内处于复杂的微环境之中,
DNA生物传感器芯片实现高灵敏度实时检测单核苷酸多态性
小编推荐会议:2018(第二届)微流控技术前沿研讨会据麦姆斯咨询报道,由加州大学圣地亚哥分校(University of California San Diego)领导的研究小组开发出一款芯片,能够检测到一种被称为单核苷酸多态性(single nucleotide polymorphism,以下简称SNP)的基因突变,该芯片能够将结果实时、无线传输到电脑、智能手机或其它电子设备。芯片感测SNP的灵
计算神经科学和类脑智能领域取得进展
计算神经科学和类脑智能是人工智能与神经科学的前沿交叉领域。其中类脑智能计算理论被列入国务院发布的《新一代人工智能发展规划》的八个基础理论之一。围绕这两个研究领域,中国科学院沈阳自动化研究所机器人学国家重点实验室斯白露研究团队近期在记忆的神经机制和类脑导航研究方面取得了突破。记忆是动物的核心高级认知功能之一。神经科学对记忆神经环路的研究初步揭示了记忆形成和提取的关键机制。20世纪70年代以来约翰·欧
微流控芯片技术应对临床检验医学的挑战
一、微流控与微流控芯片微流控(Microfluidics)的含义是微尺度下的流体控制,其研究对象是使用微米级通道操控纳升级以下微量液体的系统[1-3]。鉴于芯片是实现微流体控制的主要平台,因而微流控芯片(Microfluidic chip)是微流控的主要研究内容。微流控芯片的制作主要依托于MEMS(Micro-Electro-Mechanical System)加工工艺,具