Science:大脑信号调控工作记忆
2019年6月18日 讯 /生物谷BIOON/ --一项新的研究发现,将特定类型的大脑模式持续更长时间可以改善大鼠的短期记忆。该研究发表于6月14日的《Science》杂志上。这项新的研究发现,当个体学习新的环境时,脑细胞(神经元)产生的信号会延长数十毫秒,并且比学习熟悉环境时捕获更多的信息。当研究小组人为地将大鼠通过迷宫的最佳路径的相关记忆中涉及的信号的长度加倍时,发现具有延长的“信号”的大鼠比
Immunity:研究揭示人为什么会有免疫记忆?
2019年6月7日讯 /生物谷BIOON /——自然杀伤细胞是先天免疫系统的一部分。它们的作用是检测感染病毒的细胞并摧毁它们。当检测到感染时,一小部分最有效的杀伤细胞被识别出来并有选择地扩张--慕尼黑工业大学(TUM)的一个团队现在首次证明了这一点。这可能代表了一种简单且进化古老的免疫记忆形式。全球一半以上的人口感染巨细胞病毒(CMV),这种病毒会在体内存活一辈子。通常,这些感染不会产生任何症状。
特定胎盘干细胞可修复受损心脏
美国一项最新研究发现,一种胎盘干细胞可在实验小鼠心脏病发作后修复受损心脏,并能避免宿主免疫系统的排异反应。研究结果发表在新一期美国《国家科学院学报》上。美国芒特西奈伊坎医学院等机构研究人员介绍,此前研究就发现小鼠胎盘干细胞可以帮助怀孕母鼠修复心脏损伤,他们的新研究则确认了能让心脏细胞再生的是一种名为Cdx2的胎盘干细胞。在动物实验中,研究人员首先诱导3组雄性小鼠心脏病发作,然后让第一组
如何有效改善大脑记忆?这些研究值得一读!
近年来,科学家们在大脑记忆方面进行了大量研究,也取得了很多可喜的成果,那么我们如何有效改善记忆呢?请随小编一起来学习以下这些研究成果!【1】Nat Med:阻断蛋白VCAM1可阻止年老小鼠的记忆丧失doi:10.1038/s41591-019-0440-4在一项新的研究中,来自美国斯坦福大学的研究人员发现阻断一种将循环免疫细胞附着到血管壁上的蛋白---VCAM1---能够让年老的小鼠在记忆和学习测
Nat Med:阻断蛋白VCAM1可阻止年老小鼠的记忆丧失
2019年5月26日讯/生物谷BIOON/---在一项新的研究中,来自美国斯坦福大学的研究人员发现阻断一种将循环免疫细胞附着到血管壁上的蛋白---VCAM1---能够让年老的小鼠在记忆和学习测试中的表现与年轻小鼠一样好。相关研究结果于2019年5月13日在线发表在Nature Medicine期刊上,论文标题为“Aged blood impairs hippocampal neural precu
Neuron:大脑神经元随机连接产生“弹性”记忆
2019年5月17日 讯 /生物谷BIOON/ --来自普林斯顿大学神经科学家Flora Bouchacourt和Tim Buschman的一篇新文章介绍了一种新的工作记忆模型。工作记忆是你记住事物的能力。它充当工作空间,在其中可以保存,操纵信息,然后用于指导行为。通过这种方式,它在认知,与即时感官世界脱离行为方面起着关键作用。工作记忆的一个显着特点是它的灵活性 - 你可以牢记任何事情。如何实现这
Plos One:大脑刺激能够提高成年人的工作记忆
2019年5月16日 讯 /生物谷BIOON/ --根据杜克大学医学院的最新研究,大脑的磁刺激可以改善工作记忆,为患有阿尔茨海默病和其他形式的痴呆症的人提供新的治疗途径。接受称为重复经颅磁刺激(rTMS)治疗的健康年轻和年长成人参与者在记忆任务上的表现优于研究中的类似rTMS的安慰剂,该研究发表于PLoS One杂志上。(图片来源:Www.pixabay.com)“这项研究依赖于高度个性化的参数,
嗅觉受损可能是认知能力下降的信号,但“嗅觉训练”可能会有所帮助!
2019年5月13日讯 /生物谷BIOON /——随着年龄的增长,我们的嗅觉能力经常出现问题(称为嗅觉障碍)。老年人可能无法识别一种气味或将一种气味与另一种区分开来。在某些情况下,他们可能根本无法察觉气味。气味识别困难在患有神经退行性疾病的人身上很常见,包括老年痴呆症。在没有已知医学原因的情况下,嗅觉受损可能是认知能力下降的一个预测因素。据估计,在五年内,辨别普通气味有困难的老年人患痴呆症的几率是
JINS:要想改善工作记忆?保持良好的睡眠和情绪至关重要!
2019年5月14日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Journal of the International Neuropsychological Society上的研究报告中,来自加利福尼亚大学的科学家们通过研究发现工作记忆或许和三种健康相关因子之间存在密切关联,这三种健康相关因子包括睡眠、年龄和情感低落,每一种因素都与工作记忆的不同方面存在关联。图片来源:W. Zhan
鉴定出一种独特的肠道干细胞可再生受损肠道
2019年5月10日讯/生物谷BIOON/---肠上皮的更替由位于隐窝区底部的多能性LGR5+隐窝基底柱状细胞(crypt-base columnar cell, CBC)驱动。然而,CBC在因辐射等导致的损伤后会丢失,但是肠上皮仍然能够恢复。因此,第二组静止的"+4"细胞,即储备干细胞(reserve stem cell, RSC),已被提出再生受损的肠道。尽管CBC和RSC被认为是相互排斥的,