Cell Reports:染色质调控取决于基因与表观遗传学环境的相互作用
加州大学圣迭戈分校医学院的研究人员巧用基因敲除技术,用同一基因插入酵母染色体上的90个不同位点。他们发现,插入的基因并没有改变附近染色质的表观遗传学环境,而插入环境的差异会明显影响基因的活性。 由DNA和蛋白组成的染色质构成了细胞核,研究人员指出染色质调控中并不存在通用的“组蛋白密码”,染色质调控取决于基因与表观遗传学环境的相互作用。
Journal of Cell Science:植物减数分裂同源染色体重组机制研究新进展
减数分裂过程中同源染色体重组不仅是遗传多样性形成所必需的,而且重组形成的交叉,也是同源染色体分别受两极纺锤丝牵引稳定排列在赤道板上,最终正确分离所必需的。研究表明,两个不同途径导致两种不同类型交叉的形成,一是对干涉敏感的交叉,也称I型交叉;另一是对干涉不敏感的交叉,也称II型交叉。在大多数真核生物中,这两种交叉同时存在,两种类型交叉所占比例因物种而异。
Cell:揭示染色质调节蛋白特异性组合调控染色质活性
在人类基因组序列首次发布10年之后,研究人员发现关于影响基因功能的机制的新线索。Bradley Bernstein和Aviv Regev领导的研究小组集中研究染色质---与DNA相结合的促进基因表达的非基因物质---和协调染色质活性的特异性调节物,其中Bradley Bernstein是马萨诸塞州总医院和哈佛医学院病理学副教授,也是布洛德研究所(Broad Institute)的准会员...
Molecular Cell:新调控模式将扩展对染色质调控范围
来自密歇根大学,普林斯顿大学的研究人员发表了题为“ASH2L Regulates Ubiquitylation Signaling to MLL: trans-Regulation of H3 K4 Methylation in Higher Eukaryotes”的文章,发现了一种新型调控模式:高等真核生物H3K4甲基化的反式调控(trans-Regulation)...
Nature:人成纤维细胞中的染色质相互作用
Hi-C是基于“染色体构形捕捉”(称之为3C,因为三个单词的首字母都是C)的一项基因组技术,能以没有偏颇的方式在整个基因组中识别长距离成环相互作用。
Genet:胚胎发育中染色质修饰特异性组合决定增强子活性
称作染色质修饰化学标记(绿色)激活称作远程控制器的增强子(黄色),将一个基因(红色)开启或关闭。图片来自 EMBL/P. Riedinger。 当胚胎发育时,不同细胞中不同基因被打开以便形成肌肉、神经元和身体其他部分。在每个细胞的细胞核内部,称作增强子的基因序列发挥着类似远程控制器(remote control)的作用,打开和关闭基因。
Genet:首次揭示信号传导分子JNK直接调控染色质
来自瑞士弗雷德里克米歇尔研究所生物医学研究中心(Friedrich Miescher Institute for Biomedical Research, FMI)的研究人员与来自瑞士苏黎世理工学院(ETH Zurich)生物系统科学和工程部门的同事一起合作开展研究,描述了信号传导分子(signaling molecule)JNK如何直接修饰组蛋白从而改变基因转录。
Nature:基因组和染色质扰动的检测
当DNA发生双链断裂时,ATM (ataxia telangiectasia mutated) 激酶便被激发。“乙酰转移酶” KAT5 向被修饰的组蛋白标记物H3K9me3上的结合通过使该激酶乙酰化来促进ATM激发。
:基于染色质免疫沉淀和高通量测序的鉴定DNA易损位点的手段
2012年12月17日,北京生命科学研究所杜立林实验室在《Genome Research》杂志在线发表题为“Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method”的文章。