打开APP

研究揭示麦类特异转座子重塑小麦环境适应的调控网络

 转座子(Transposable Element,TE)是基因组中可移动的DNA元件。小麦族物种的转座子呈现爆发性增长,基因组高达3-16 Gb,85%以上由TE组成,而与之亲缘关系密切的二穗短柄草基因组只有272 Mb。可以说小麦的基因是“散落”在TE的海洋中,那么这些TE群体仅仅是自我复制垃圾序列,还是会影响宿主的基因活性与适应性呢?中国科学

2021-09-16

研究揭示MAPK信号途径调控小菜蛾对Bt Cry1Ac杀虫蛋白抗药性信号网络的拓扑结构和功能机制

  近日,蔬菜花卉研究所蔬菜害虫防控团队绘制了Bt Cry1Ac杀虫蛋白的高抗小菜蛾中MAPK信号途径反式调控多个中肠受体基因和非受体同源基因差异表达的信号网络。该研究首次揭示了MAPK信号途径参与害虫抗药性的分子调控网络,研究结果对于指导重大农业害虫对Bt抗性的监测预警以及转Bt基因抗虫作物的抗性治理具有重要的理论和实践意义。相关内容以

2021-09-28

研究利用动态网络生物标记分析发现甘薯膨大的分子机制

  中国科学院分子植物科学卓越创新中心研究员张鹏研究组与中科院分子细胞科学卓越创新中心研究员陈洛南研究组合作,在The Plant Journal上发表了题为Dynamic network biomarker analysis discovers IbNAC083 in initiation and regulation of sweet

2021-09-09

Journal of Psychiatric Research:发现大脑腹侧苍白球与默认网络间的功能连接和创伤后快感缺失症状相关

 快感缺失是指个体在通常会引起积极情绪的情况下,唤起积极情绪能力的缺陷。快感缺失症状存在于多种精神障碍中,也是个体经历创伤事件后常见的一种不良反应。中国科学院心理健康重点实验室王力研究组的前期研究发现,快感缺失是创伤后应激障碍中的一个独立存在的症状维度,表征了创伤应激对正性效价系统功能的影响。快感缺失被证实在创伤后的心理病理过程中发挥了重要作用,理

2021-09-11

PNAS:研究揭示传粉榕小蜂从互惠共生向欺骗寄生演化的机制

  互惠共生是两种不同的生物在相互合作中受益,形成稳定的合作关系。以往研究发现互惠共生从不同尺度上影响全球生态过程,而物种间互惠关系的获得、维持或丢失的演化机制仍是未解之谜。榕树-传粉榕小蜂在繁殖上高度依赖,形成了严密的、颇具代表性的互惠共生系统。榕属植物具有独特的隐头花序结构,依赖专一的榕小蜂传粉,榕树为传粉榕小蜂提供繁殖场所及食物,双

2021-08-06

NeuroImage:发现反刍思维状态下默认网络动态稳定性下降而额顶控制网络稳定性上升

  反刍思维是指对发生在自己身上的负性生活事件本身及其可能的原因和后果的反复思考。反刍思维具有显着的现象学特征,个体的思维内容常在进入反刍思维状态以后变得单调、循环往复,仅仅关注自我和过去,这种现象学特征可能和脑活动的动态稳定性特点相关。动态稳定性是指大脑不同脑区之间的交互随着心理活动的变化,在进行动态变化的同时仍然能够维持总体上稳定的特

2021-08-19

Trends in Immunology:淋巴器官成纤维细胞网状细胞和管道网络作用

不同免疫细胞群的相互协调作用可促进识别病原体或癌细胞,并能精确协调免疫激活和免疫调节之间的平衡。这种平衡的建立和维持依赖于身体内外表面信息的有效和准确传输以及不同免疫细胞群之间的信息交流。

2021-08-19

Nature Communications:利用工程细菌编辑功能性半互穿网络聚合物研究中取得进展

  中国科学院深圳先进技术研究院合成生物学研究所副研究员戴卓君和美国杜克大学教授游凌冲等,提出了一种全新的可模块化、多样化融合蛋白组分的活体semi-IPN的构建思路,通过微凝胶包裹植入基因线路的两种大肠杆菌。相关研究成果以Living fabrication of functional semi-interpenetrating pol

2021-08-13

研究人员提出非宿主植物参与菌根网络新观点

  约90%以上陆生植物可与真菌形成菌根(Mycorrhiza),在农林生态系统中常见的类型是丛枝菌根(Arbuscular Mycorrhiza,AM)和外生菌根(Ectomycorrhiza,EM)。植物与AM或者EM二者互惠共生,其中植物为真菌提供所需碳水化合物,真菌则协助植物获取更多的养分和水分并增强其抗逆性。自然条件下,一种植物

2021-07-20

Stem Cell Rep:三个关键基因组成的基因网络或能决定心脏细胞的生长

2021年7月29日 讯 /生物谷BIOON/ --Hand1和Hand2是两种特殊的转录因子,编码这两种转录因子的基因被敲除后会使得小鼠分别表现为左心室和右心室发育不良。长期以来,心脏疾病一直是引发全球人群死亡的主要原因,其中原因之一就是心脏的再生能力较差,从而就会导致损伤积累;科学家们推测,理解心脏如何从胚胎开始或有望帮助开发出新型疗法。近日,一篇发表在

2021-07-29