Cell:帮助精卵子发育出23条染色体的关键工具
4月13日,国际著名杂志《细胞》Cell上刊登了美国加州大学戴维斯分校的研究人员的最新研究成果“Delineation of Joint Molecule Resolution Pathways in Meiosis Identifies a Crossover-Specific Resolvase,”,在文章中,科研人员发现了帮助精子和卵子各自准确地发育出23条染色体的一个关键工具。
Nature:研究者揭示染色体组装新机制
染色体是相对大的分子,展开后的长度可以达到人的手臂那么长,尽管如此,实际上,染色体还是被限制在细胞核的狭小空间中,而且尺寸在微米级别。 染色体,遗传学的分子基础,自从1882年被研究者Walther Flemming发现后,保持了长达130年的神秘性。
常染色体基因Six1/Six4调节了雄性性别决定以及小鼠性腺的发育
Y染色体基因Sry的表达决定了胚胎中早期性腺向睾丸发育,从而进一步决定了个体的性别及其生殖细胞的类型。但是对Sry基因的表达调控,我们还知之甚少。来自日本的研究人员发现Six基因家族中的Six1和Six4在性别决定以及性腺发育中起了非常重要的作用。同时敲除Six1和Six4的XY型小鼠胚胎会从雄性向雌性转变,并且Sry基因不能激活,在单独敲除Six1或Six4的小鼠中则不会出现这种表型。
Cell Reports:染色体完整性的双保险
基因组的不稳定性会导致细胞死亡或者引发癌症,现在科学家们发现,细胞中有两个分子机制共同起作用,以避免发生这种情况。南加州大学的科学家们指出,在DNA解链进行复制时,重复DNA处于最不稳定的时期,此时就依赖异染色质和复制叉蛋白联手对其进行保护。文章于3月7日提前发表在Cell Reports杂志的网络版上。
PNAS:染色体分离的关键
着丝粒位于染色体上在细胞分裂过程中具有重要作用,日前纽约大学的生物学家揭开了关键蛋白被装入着丝粒的详细机制,有助于人们进一步了解基因组复制并分析染色体数异常背后的潜在因素。这项发现发表在最近一期的美国国家科学院院刊PNAS杂志上。 着丝粒负责介导染色体分离以确保子细胞获得基因组的完整拷贝,这一过程遭到破坏可能导致染色体数异常,而这种异常在90%的癌症中都明显存在。
Nature:解析肿瘤染色体频发遗传缺陷
在最新一期(2月27日)的《自然》(Nature)杂志上,来自英国癌症研究中心的研究人员在大肠癌中揭示了一种引起肿瘤染色体不稳定的频发遗传缺陷。他们的研究数据提供了新的角度了解癌症生物学这一特性的起因。 微小DNA突变和染色体不稳定(CIN,染色体数目及结构改变)是导致肿瘤遗传变异的重要原因。结构性染色体不稳定会导致全体染色体重排,这有可能是由于损伤性DNA错误修复所引起。
Cell:人胚胎干细胞分化中特异性的染色体变化
2012年9月14日 讯 /生物谷BIOON/ --9月13日,国际著名杂志Cell在线发表了华盛顿大学干细胞和再生医学研究所Charles E. Murry和医学系Stamatoyannopoulos等的一篇题为A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac
Nat Struct & Mol Biol:调节组蛋白或可避免机体细胞染色体出现异常
刊登在国际杂志Nature Structural & Molecular Biology上的一篇研究论文中,来自瑞典卡罗林斯卡医学院的研究人员通过研究揭示,表观遗传学的微妙变化或许对于染色体的正确分离至关重要。
Nat Genet:破译首个比目鱼基因组 揭秘性染色体起源及底栖适应机制
近日,迄今为止世界上首个比目鱼基因组——半滑舌鳎全基因组精细图谱在青岛宣布完成。中国水产科学研究院黄海水产研究所研究员陈松林表示,这是世界上首个测序完成的比目鱼基因组图谱,标志着鲆鲽鱼类养殖研究进入基因组时代。
Nature:染色体的真实形态发现,并不是X形状
日前,来自英国剑桥巴布拉汉研究所(Babraham Institute)等机构的研究人员构建出了漂亮的染色体 3D 模型,这些模型更准确地显示出了染色体的复杂形状以及 DNA 在其中折叠的方式。原来我们所熟知的染色体的X形态并不是其真正的模样。相关文章发表在2013年9月25日的《Nature》上。