打开APP

Nat Biotechnol:中科院高彩霞团队成功开发植物基因组引导编辑技术

  1. Cas9
  2. CRISPR
  3. pegRNA
  4. 引导编辑
  5. 碱基编辑器
  6. 逆转录酶

来源:本站原创 2020-03-30 12:53

2020年3月30日讯/生物谷BIOON/---先天淋巴细胞(innate lymphoid cells, ILC),也被称作固有免疫细胞,是一类不同于T细胞和B细胞的淋巴细胞亚群,位于肠道粘膜表面中,增强免疫反应,维持粘膜完整性和促进淋巴器官形成。它们缺乏克隆性的抗原受体,在分化过程中也没有经历Rag基因的重排过程。在感染之后的数小时之内,ILC就能够活化
2020年3月30日讯/生物谷BIOON/---许多遗传和育种研究表明,点突变和插入/缺失(插入和缺失, indel)可以改变农作物的优良性状。尽管核酸酶启动的同源介导修复(homology-directed repair, HDR)可以产生这种变化,但它受到效率低的限制。碱基编辑器是用于进行碱基转换的强大工具,但不能用于进行碱基颠换、插入或缺失。因此,迫切需要在植物中可使用的新型基因组工程方法。

在此之前,美国哈佛大学的David R. Liu和他的同事们开发出一种新的称为引导编辑(prime editing)的基因组编辑方法。这种方法使用工程化的Cas9切口酶(H840A)-逆转录酶(RT)融合蛋白和引导编辑向导RNA(prime editing guide RNA, pegRNA),可在人细胞中进行所需的编辑。

在一项新的研究中,中国科学院遗传与发育生物学研究所的高彩霞(Gao Caixia)教授及其研究团队对一种引导编辑系统(prime editing system, PPE)进行优化,从而在两种主要的谷类作物中产生所需的点突变、 插入和缺失。PPE系统的主要成分是Cas9切口酶-RT融合蛋白和pegRNA。相关研究 结果近期发表在Nature Biotechnology期刊上,论文标题为“Prime genome editing in rice and wheat”。
图片来源:CC0 Public Domain。

通过使用这种PPE系统,这些研究人员在原生质体中在9个水稻位点和7个小麦位点上产生了所有12种类型的单碱基替换,以及多种点突变和小DNA片段插入,效率高达19.2%。这种PPE系统的编辑效率受到引导结合位点(primer binding site, PBS)和RT模板长度的强烈影响。

尽管这种PPE系统会产生副产物(脱靶效应),但是可以通过优化RT模板长度来减少这些副产物。此外,通过使用针对植物优化的PPE系统,他们发现初始的RT可以被CaMV-RT(来自花椰菜花叶病毒)和反转录子衍生性RT(来自大肠杆菌BL21)替换。通过使用PPE-Ribozyme(PPE-R)并在37°C下孵育,针对一些靶标的引导编辑效率也可得到改善。

此外,高彩霞教授和她的合作者能够构建稳定的携带G-to-T点突变、多核苷酸替换和许多所需的6nt缺失的突变水稻植株,它们的产生效率接近22%。值得注意的是,使用当前的编辑工具很难产生这三种类型的突变。

高彩霞教授说,“尽管这种PPE系统的效率低于碱基编辑器,但是它仍然是一种吸引人的新工具,可用于产生所有12种类型的单点突变、不同替换的混合物以及插入和缺失。这种系统因此具有巨大的潜力用于开展植物育种和功能基因组学研究。”(生物谷 Bioon.com)

参考资料:

1.Qiupeng Lin et al. Prime genome editing in rice and wheat. Nature Biotechnology, 2020, doi:10.1038/s41587-020-0455-x.

2.Scientists optimize prime editing for rice and wheat
https://phys.org/news/2020-03-scientists-optimize-prime-rice-wheat.html

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->